
Scientific Report

AI Folk – Resource Management for Distributed AI

2023

Contents

1 Introduction 1

1.1 Challenges . 2

1.2 Progress on objectives . 3

2 AI Folk Ontology 3

3 AI Folk Interaction Protocol 5

4 AI Folk Deployment 6

4.1 Entities . 6

4.2 Deployment . 6

4.3 Evaluation of Machine Learning Models . 7

5 Autonomous Driving Scenario 11

5.1 Experimental Scenario . 12

5.2 Datasets and Models . 13

5.3 Autonomous Driving Ontology . 13

5.4 Experiments and Results . 15

6 Disaster Response Scenario 16

7 AI Folk Methodology 17

8 Executive report 20

1 Introduction

Year 2023 has been very productive for the AI Folk , having completed designing and developing the
autonomous driving scenario and having made significant steps towards the completion of the AI Folk
methodology.

We have successfully implemented the scenario on the basis of the Flash-mas multi-agent framework,
integrating the AI Folk methodology with the existing MAS framework.

The main principle of the AI Folk methodology is the ability of agents to semantically describe machine
learning (ML) models, to search for appropriate ML models in the repositories of other agents, to
transfer such models and use them for their own goals.

1

Figure 1: Blocks developed for the AI Folk scenario.

Developing the autonomous driving scenario has encompassed various important steps, some of which
have not been anticipated at the time of the proposal:

� development of the scenario itself and focus on elements which are relevant to the AI Folk
methodology.

� a survey of available ML models and datasets for autonomous driving, testing and evaluation of
the models, and selection of models to be used for the scenario.

� development of ontological concepts and instances needed to semantically describe all elements
in the autonomous driving scenario.

� development of methods to interface between the ML models, implemented in the Python pro-
gramming language, and the multi-agent framework, implemented in Java.

� the creation of new types of entities in the Flash-mas framework, dedicated to the AI Folk
scenario implementation.

� the integration of the AI Folk ontology, the AI Folk interaction protocol, the execution of ML
models, and agent behaviours specific to the AI Folk methodology, in the existing Flash-mas
framework.

� development of mechanisms for simulating the autonomous driving scenario, integrated with the
Flash-mas framework.

A structural view of these elements is presented in Figure 1.

This report details the architecture of the AI Folk ontology, details on the AI Folk interaction protocol
and the architecture of the experimental AI Folk application, the description of the autonomous driving
and disaster response scenarios, and lessons learned so far related to the AI Folk methodology.

1.1 Challenges

There were several unanticipated challenges in implementing the AI Folk methodology and in realizing
the experiments.

An important challenge was the fact that most machine learning (ML) models are implemented using
Python libraries, whereas the deployment framework, as well as the libraries for working with ontolo-
gies, are implemented in Java. That meant developing a mechanism for interaction between the two
languages, which is based on a local Python RESTful web server which loads and manages the ML
models, and what we call a driver which assists the components implemented in Java with accessing
the server.

A challenge also related to the ML models was that there is a great deal of variety in how ML models are

2

evaluated (executed), how input must be transformed in preparation for the model, and how the output
of the model must be processed after the model evaluates. This variety was so great that the solution
was to implement specific pieces of code for each of the models integrated in our implementation, to
deal with each one of these steps – input transformation, model evaluation, and output processing.

The variety of non-agent entities that were necessary in the implementation resulted in the need to
implement a new type of entity in Flash-mas – the driver, an entity which is local to a node and
enables agents on that node to interface with local resources, such as the ML Python server, the AI
Folk Ontology, and the execution of the scenario.

In order to have correct information about a model, one needs to have information about the dataset
on which the model was trained, or, in case this is not available, one needs to evaluate the model on
an appropriate dataset. On the dataset, information relevant to the scenario must be gathered. For
instance, for the autonomous driving scenario, for dataset we needed to obtain information such as
weather conditions, number of cars and pedestrians, and so on; and we needed to evaluate models on
the datasets in order to assess their performance (see 5.4).

1.2 Progress on objectives

At the time of this report we have achieved the following progress:

WP1: We have completed creating the AI Folk ontology. The ontology contains scenario - inde-
pendent concepts and instances, as well as concepts and instances specific to the discussed
scenarios.

WP2: The AI Folk protocol has been implemented and integrated into the Flash-mas framework.
It has been tested in the experiments and it works correctly.

WP3: Work on the methodology is underway and many lessons have been learned during the devel-
opment of the autonomous driving scenario. What is left to do is to give a finished, applicable
aspect to the lessons learned so far.

WP4: An autonomous driving scenario has been researched and all of its aspects implemented,
encompassing ontology, simulation of agent deployment, and experiments with the elements
of the methodology.

WP5: Work on the disaster response scenario has started, having completed surveying models and
datasets for disaster response, and having gathered some elements for the scenario.

WP6: Two papers have been published bearing the project acknowledgement, one in a Q2 journal
and one at a prestigious conference with Springer post-proceedings (to be published). Another
journal paper is under development.

2 AI Folk Ontology

In the AI Folk communication protocol, agents exchange information between themselves whenever
one agent encounters a situation where the input it is receiving from its environment is far different
from the input expected by its decision making algorithms in order to produce an accurate decision.
The agents will exchange messages consisting in:

� A qualitative description of the inputs received over a given window of time, i.e. what kind of
environment they are perceiving

� Decision making models (usually ML based), which were developed / trained using data that is
similar in kind and quality to the one currently perceived by the querying agent

3

The purpose of the AI Folk ontology is to introduce the vocabulary required to exchange such messages:
(i) describe the data in terms of its qualities - i.e. provide a data context description, and (ii)
describe the AI models and their evaluation mode, so as to determine if they are suitable for a given
data context.

Describing data in terms of its qualities is by necessity an application domain dependent procedure.
Consequently, the AI Folk ontology is designed in a modular fashion. It contains a core vocabulary
defining how concepts such as a Scenario and its TaskCharacterization are related to a Model and its
ModelEvaluation in an ApplicationDomain (see also Figure 2). The core module is then extended by
domain specific vocabulary (such as the segmentation in autonomous driving one) which introduces
concepts and relations that describe qualities of data from key perspectives of the application domain
(see Section 5.3)

Figure 2 gives a general overview of the AI Folk core concepts and relations. The left side of the concept
graph starts from a Scenario that is described in terms of TaskCharacterizations. Tasks are subdivided
from the perspective of a ML algorithm into objectives such as Classification, Regression, Segmentation,
ObjectDetection. Each such task is has a domain to which it applies. The ApplicationDomain is also
one that was addressed by Dataset. The Dataset in turn was used during the evaluation of a Model,
obtaining an EvaluationResult. In this way, scenario tasks (as perceived by the agent) are linked to
models that have been on datasets that have similar content.

Both TaskCharacterization and a Dataset are further described by one or more DataContexts, which
is the concept that gets extended in the domain specific ontology module.

To determine the domain specific concepts and relations, the AI Folk ontology uses the competency
question methodology to determine what the main objects and relations of relevance are. For the task
of segmentation in an autonomous driving scenario one might ask, for example:

� Which are the target classes of the segmentation task? (e.g. drivable lane, opposite lane, traffic

Figure 2: An overview of the main concepts and properties in the AI Folk Core ontology module,
showing how Scenarios described in terms of Tasks relate over an ApplicationDomain with ML Models
and their Evaluation on Datasets from the same domain

4

participant, pedestrian, other)
� What are the illumination conditions for driving scenes present in the task?
� What are the weather conditions for driving scenes present in the task?
� What are the scene categories (e.g. urban, parking lot, rural, highway) present in the task?

In Section 5.3 we detail how the AI Folk DrivingSemanticSegmentation ontology module addresses
these modeling issues.

3 AI Folk Interaction Protocol

The AI Folk protocol implementation mainly follows the specification given in our 2022 report. The
protocol is currently implemented in the ML Management Shard. We will give some details on some
aspects that have arisen during the implementation and the experiments.

The purpose of the AI Folk interaction protocol is to ensure that agents can search for models which are
appropriate to a situation and can transfer information about those models. While initially we intended
that search messages contain a SPARQL query that can be applied directly by the local Ontology Driver
in order to identify appropriate models, while developing the experiments it resulted that sometimes
the query would have to be overly complex to create, given the constraints of working with ontologies.
Conversely, it resulted, while implementing situation detection, that situation detection itself required
using some machine learning modes (e.g. for determining the weather, or the average number of
pedestrians in a given time window), hence there is a finite and determined number of features of
the situation that one can handle in a scenario. Given this determination, it resulted that instead
of creating a SPARQL query and let the Ontology driver run it, it is easier, from the point of view
of the developer implementing the scenario, to iterate through model descriptions and check for the
appropriate features.

In conclusion, when an agent needs to search for a model with certain properties, it assembles an RDF
graph describing a model with the needed features. It then serializes this description and sends it, in
a message, to other agents.

There are several entry points in the AI Folk protocol, all of which are events, since agents in
Flash-mas are generally event-driven. The first entry point is internal, in the case in which the
ML Management Shard detects that the current model in use is not adequate for the current situation
of the agent. The shard creates an AIFOLK SEARCH message containing the description of an appropriate
model and sends it to other agents.

The second entry point is the receipt of an AIFOLK SEARCH message. In this case the shard looks into the
list of models that it contains and checks which model, if any, best match the given criteria. It then
sends an AIFOLK LISTING message as a reply.

Upon receiving an AIFOLK LISTING message, the ML Management Shard records it and, if all the replies
have been received, or a deadline has passed, it chooses which model to use. For that model, it sends
an AIFOLK REQUEST message, which is replied to with an AIFOLK TRANSFER message.

5

4 AI Folk Deployment

4.1 Entities

In order to create an AI Folk development test-bed and to run experiments with the autonomous
driving scenario, there was a need to create or use an infrastructure that:

� supported the deployment of various entities and the management of their lifecycle. Among these
entities there are agents, ML models, communication infrastructures, and auxiliary elements such
as running the scenario or working with ontologies and ML models;

� enabled communication among the various entities, especially between agents;
� enabled rapid testing of multi-agent scenarios.

In order to satisfy these requirements without creating a development test-bed from scratch, we have
decided to use the Flash-mas framework – A Fast, Lightweight Agent Shell – developed at UNSTPB
in recent years [Olaru et al., 2019]. We have chosen Flash-mas over JADE [Bellifemine et al., 1999], a
popular MAS deployment framework, due to its flexibility, support for dynamically loaded components,
variety and customizability of deployed entities, and good performance.

In short, Flash-mas, implemented in Java, is able to deploy any persistent entity given it implements
a basic Entity interface. There are a few standard entities in Flash-mas, such as nodes, pylons
(embodying communication infrastructures), agents, and shards. Shards are sub-agent entities which
embody specific agent functionality, such as messaging, or monitoring.

In order to deploy the AI Folk experiments, we needed to build several custom entities, as follows.

Several drivers had to be created and designed, for interaction between AI Folk agents and their
environment. We call drivers persistent entities that enable the relation with node-local non-agent
entities (different from pylons, which handle the relation with network-wide infrastructures, e.g. for
communication). We have created three pylons for each node in the deployment, to deal with: scenario
execution – feeding input data to agents and checking their output; ontology access and querying
(see Section 2); and evaluation of ML models – see Section 4.3.

Several agent shards had to be implemented as well, embodying the functionality needed to implement
the AI Folk methodology. The Scenario shard receives input from the Scenario driver and feeds it to
the agent’s event queue. It also intercepts the agent’s actions and sends them to the Scenario driver
for verification and monitoring. The evaluation of ML models on the input, in order to decide the
action, is done by the ML Pipeline shard, which uses the currently selected ML models.

The actual implementation of the AI Folk methodology, in terms of evaluation and selection of the
appropriate models to use, as well as searching for other, better models to use in the current situation,
is done by the ML selection shard.

A class-interaction diagram presenting the relations between these entities is presented in Figure 3.

4.2 Deployment

Thanks to the advantages of Flash-mas , deployment is easily specified via an XML file, or via the
command line, in a very simple and intuitive manner. For instance, for our test scenario, the command
line for one node looks something like this:

quick.Boot -load_order driver;pylon;agent

-package testing net.xqhs.flash.ml src-experiments aifolk.core aifolk.onto

6

Figure 3: A class-interaction diagram presenting the relations between these entities in an AI Folk
deployment

-loader agent:composite -node node1

-driver ML:mldriver -driver Scenario:scen script:script -driver Ontology:ont

-pylon local:pylon1

-agent A in-context-of:ML:mldriver in-context-of:Scenario:scen

-shard scenario -shard MLPipeline -shard MLManagement -shard messaging

-shard EchoTesting exit:20

In this specification, the important highlights are the three drivers, and the specification of one agent
(all agents are specified similarly), which is placed in the context of the three drivers, so it can access
their functionality, and which contains functionality for receiving scenario-related events (the scenario
shard), for using ML models (the ML pipeline shard), for managing its own ML models, for messaging,
and for echoing events at the system output.

4.3 Evaluation of Machine Learning Models

An important challenge in the deployment of AI Folk scenarios was the fact that the Flash-mas
framework is implemented in Java, but most machine learning models are implemented in Python,
and using dedicated ML libraries such as PyTorch1 and Tensorflow2.

Integrating a Python Flask server for neural network predictions into a Java project can offer significant
advantages in terms of flexibility, scalability, and ease of deployment. Python, with its rich ecosystem
of machine learning libraries like PyTorch and TensorFlow, excels in building and training neural
networks. Flask, a lightweight web framework, provides a seamless way to expose these models through
RESTful APIs. By employing a Python Flask server, we can encapsulate the complex neural network
logic in a language optimized for machine learning, while Java, renowned for its robust enterprise

1PyTorch: pytorch.org
2Tensorflow: www.tensorflow.org

7

https://pytorch.org
https://www.tensorflow.org

solutions, can focus on handling other aspects of the project. This separation of concerns facilitates
a more modular and maintainable codebase. Additionally, Flask’s simplicity and quick development
cycles allow for rapid prototyping and testing, enabling efficient iteration of the machine learning
components of the project.

For the server, we chose to use a YAML configuration file where we define the initial models and
datasets. For each model, we specify its name, the path to the .pth file containing the model weights,
the input type processed by the model, the task for which the model is proposed, the dataset used for
training, and information related to any required preprocessing. Similarly, for each dataset, we specify
its name and the possible labels. To better understand the proposed format, we provide an example
of a configuration file.

PORT: 5000

MODELS:

-

name: "MobileNetV2"

path: "models/mobilenetv2.pth"

transform: "datasets.transform.ImageNetTransform"

cuda: false

input_space: RGB

task: "classification"

dataset: "ImageNet"

-

name: "ResNet18"

path: "models/resnet18.pth"

cuda: true

input_space: RGB

transform: "datasets.transform.ImageNetTransform"

task: "classification"

dataset: "Custom Dataset"

DATASETS:

-

name: "Custom Dataset"

class_names: [’apple’,’atm card’,’cat’,’banana’,’bangle’,’battery’,’bottle’,’broom’,

’bulb’,’calender’,’camera’]

For each service, the route is defined using the @app.route decorator with the path /predict. It
specifies that the route can only handle HTTP POST requests (methods=[’POST’]). The services
provided by this server are as follows:

� /add model – The add model service is a Flask route defined in the ML server. This service
is designed to handle HTTP POST requests for adding machine learning models to the server.
Here’s a breakdown of how it works:
1. Request Parameters

The service expects the following parameters to be included in the POST request form data:
– model name: The name of the model.
– model file: The path to the model file.
– model config: A JSON-formatted string containing additional configuration for the

model.
2. Functionality

Upon receiving a request, the service extracts the relevant information from the form data.
It then attempts to load the model using the get model function, which utilizes PyTorch
to load the model from the specified file path. The loaded model is associated with its con-
figuration, including the model name, file path, CUDA availability, task type, and dataset
information. The loaded model is added to a global dictionary models, where model names

8

serve as keys.
3. Response

The service returns a JSON response:
– If the model is successfully added, it returns a success message indicating that the model

has been added.
– If there is an error (e.g., missing model name or model file), it returns an error message

along with a 400 Bad Request status.
4. Example POST Request Data

{

"model_name": "example_model",

"model_file": "/path/to/example_model.pth",

"model_config": "{\"cuda\": true, \"task\": \"classification\",

\"dataset\": \"mnist\"}"

}

5. Example Success Response

{

"message": "Model ’example_model’ has been successfully added."

}

This service facilitates the dynamic addition of machine learning models to the server,
allowing users to extend the set of available models without modifying the code.

� /add dataset

1. Request Parameters
The service expects the following parameters to be included in the POST request form data:
– dataset name: The name of the dataset.
– dataset classes: A JSON-formatted string containing the class names for the dataset.

2. Functionality
Upon receiving a request, the service extracts the relevant information from the form data.
It then checks if the dataset already exists in the global datasets dictionary. If it does not
exist, the service adds the dataset with its class names to datasets.

3. Response
The service returns a JSON response:
– If the dataset is successfully added, it returns a success message indicating that the

dataset has been added.
– If there is an error (e.g., the dataset already exists or missing dataset name or class

names), it returns an error message along with a 404 Not Found status.
4. Example POST Request Data

{

"dataset_name": "example_dataset",

"dataset_classes": "[\"class1\", \"class2\", \"class3\"]"

}

5. Example Success Response

{

"message": "Dataset ’example_dataset’ has been successfully added."

}

This service facilitates the dynamic addition of datasets to the server, allowing users to
extend the set of available datasets without modifying the code.

� /predict

1. Request Parameters
The service expects the following parameters to be included in the POST request form data:
– model name: The name of the machine learning model.
– input data: Base64-encoded input data for prediction.

2. Functionality

9

Upon receiving a request, the service extracts the relevant information from the form data.
It checks if the specified model exists in the global models dictionary. If the model exists,
it performs the following steps:
– Decodes the Base64-encoded input data.
– Utilizes the PyTorch model and associated transformations to make a prediction.
– Constructs a response containing the prediction results and additional information like

class names, task type, and dataset.
3. Response

The service returns a JSON response:
– If the model exists and the prediction is successful, it returns a response containing the

prediction results and related information.
– If there is an error (e.g., the specified model does not exist), it returns an error message

along with a 404 Not Found status.
4. Example POST Request Data

{

"model_name": "example_model",

"input_data": "base64_encoded_data"

}

5. Example Success Response

{

"prediction": [0.85, 0.15, 0.0],

"class_names": ["class1", "class2", "class3"],

"task": "classification",

"dataset": "example_dataset"

}

This service facilitates making predictions using a specified machine learning model, pro-
viding flexibility for different models and tasks.

� /get models

1. Functionality
Upon receiving a request, the service reads the model configuration file specified by the
constant MODEL CONFIG FILE. It then constructs a response containing information about
available models by iterating through the models defined in the configuration.

2. Response
The service returns a JSON response:
– If the model configuration file is successfully loaded, it returns a response containing a

dictionary of available models and their respective configurations.
3. Example Success Response

{

"models": {

"example_model1": {

"name": "example_model1",

"path": "/path/to/example_model1.pth",

"cuda": true,

"task": "classification",

"dataset": "mnist"

},

"example_model2": {

"name": "example_model2",

"path": "/path/to/example_model2.pth",

"cuda": false,

"task": "regression",

"dataset": "cifar10"

},

...

10

}

}

This service provides information about the available machine learning models based on the
configuration file.

� /export model

1. Request Parameters
The service expects the following parameters to be included in the POST request form data:
– model name: The name of the machine learning model to export.
– export directory path: The path to the directory where the model will be exported.

2. Functionality
Upon receiving a request, the service checks if the specified model exists in the global models
dictionary. If the model exists, it performs the following steps:
– Reads the model configuration file specified by the constant MODEL CONFIG FILE.
– Identifies the configuration for the specified model.
– Creates a new configuration file containing only the information for the specified model.
– Saves the new configuration file in the export directory.
– Copies the model file to the export directory.

3. Response The service returns a JSON response:
– If the model exists and the export is successful, it returns a response containing a

success message and the destination directory.
– If there is an error (e.g., the specified model does not exist), it returns an error message

along with a 404 Not Found status.
4. Example POST Request Data

{

"model_name": "example_model",

"export_directory_path": "/path/to/export_directory"

}

5. Example Success Response

{

"message": "Model ’example_model’ has been successfully exported.",

"destination": "/path/to/export_directory"

}

This service facilitates exporting a machine learning model along with its configuration to
a specified directory.

5 Autonomous Driving Scenario

For the current stage of the project, an autonomous driving scenario has been developed. The purpose
of the scenario is to have a hypothetical driver which is put in various situations that can prove the
need for the cooperation with other agents in order to have better models, trained on more suitable
datasets, in order to obtain the best results available. The scenario was made for object segmenta-
tion, one of the most important tasks regarding autonomous driving, but the idea can be extended
regarding any other autonomous driving component - localization, perception, prediction, planning or
motion control and any algorithm inside a specific component, for example object detection or depth
estimation, considering the perception component.

This section describes the scenario used for this project, the datasets and the models that were used
considering the current scenario, the corresponding ontology that was developed in order to have a

11

Figure 4: Autonomous driving scenario

symbolic modeling for the current scenario, the experiments that were made for this task and the
analysis of the results.

5.1 Experimental Scenario

The experimental scenario contains 7 cities with different light conditions, population density and road
types. At the beginning of the scenario, a car starts in the city labeled with number 1. The initial
model that is used by the car is trained on Cityscapes. The segmentation network can vary too - the
discussion will consider the best dataset for a city but also the possible switch between different models.
The car will move through the day into various cities and different light conditions. The experimental
scenario can be seen in Figure 4, which considers a variation between the nodes regarding the change
of the dataset. The scenario considers only the semantic segmentation, but can be used for any other
task.

Initially, the driver will go from city 1 to city 2, then city 3, then city 4. All of them are during the
day. However, for city 2 the best training dataset is ADE 20k, for city 3 the best training dataset is
pascal VOC and for city 4 CamVid has the best results. In city 1, suddenly a lot of people will appear
and the car will go through a university campus. A new model could be used when this sudden change
appears, then the car can switch to the previous model. City 2 will have a lot of unmarked roads, for
which we could use another model and city 3 will have some unusual crossroads and another model
will be used for that.

After visiting the fourth city, the car returns to city 1, then goes to city 5, which is best represented
by Pascal VOC. However The light conditions will change and the dusk comes (node 5b in the figure).
The best dataset for this condition is BDD100k. The night comes (5c) and the best model for the
night is SUN RGB-D. The weather in 5c will be very bad, a storm will come and another segmentation
model can be used for the bad weather.

The next day (the driver is back to the node 5a with VOC) the car moves to another city, city number
6 and the light change again from day to dusk and night (nodes 6a, 6b and 6c). However the best
models considering this city are KITTI for day, SUN RGB-D for the dusk and BDD100k for the night.
(here we can also vary the network for city 6). The car goes to another city, city number 7, which
is best represented by Sun RGB-D. The car leaves this city and arrives in city 6 in dawn conditions
(similar to dusk, represented by SUN RGB-D) then the day comes (node 6a) and then the car goes
back to city 1.

12

Table 1: Semantic segmentation datasets (part 1)
Name ADE20k Cityscapes Pascal VOC Stanford CamVid
created 2016 2016 2012 2017 2008
domain general driving general indoor driving
tasks object detection,

semantic
segmentation

detection,
segmentation

classification,
detection,
segmentation

detection,
segmentation,
depth

object detection,
semantic segmen-
tation

no. classes 150 30 20 24 32
illumination generally day daytime generally day generally day daytime
weather generally sunny good/ medium

weather
generally sunny indoor/ artificial

light
mostly generally
sunny

Table 2: Semantic segmentation datasets (part 2)
Name KITTI BDD100k Vistas SUN Synthia
created 2013 2020 2017 2017 2016
domain driving driving driving mostly indoor virtual city
tasks multiple tasks

(detection
segmentation etc)

detection,
segmentation

detection,
segmentation

detection,
segmentation,
depth

semantic segmen-
tation, detection

no. classes 11 19 124 37 13
illumination daytime day, dusk, night various day time generally artificial

light/ day
daytime

weather generally sunny sunny, rain,
overcast, snow

various day times not appliable sunny, overcast

5.2 Datasets and Models

For the current scenario, in order to be more realistic, some datasets and models were used. The
analyzed datasets are:

� ADE20k [Zhou et al., 2017], Cityscapes [Cordts et al., 2016], Pascal VOC [Everingham et al., 2010],
Stanford [Armeni et al., 2017], CamVid [Brostow et al., 2009], KITTI [Geiger et al., 2013], BDD100k
[Yu et al., 2020], Vistas [Neuhold et al., 2017] as well as Sun RGB-D [Xiao et al., 2010] and Syn-
thia [Ros et al., 2016];

� for the segmentation network there have been used DeepLabv3 [Yurtkulu et al., 2019] and YoloV8
[Jocher et al., 2023], which are state-of-the art segmentation models.

The most important information regarding the datasets can be found in table 1 and table 2. Besides
the most relevant properties described in the tables, each dataset was evaluated according to a number
of questions regarding the average number of cars or pedestrians per image, average percentage for
the cars or the pedestrians in an image, the percentage of the weather conditions and the illumination
conditions and also considering the number of different intersections in an image. These questions
could be further used in order to evaluate the benefit of using one dataset against another.

5.3 Autonomous Driving Ontology

Remember from Section 2 that the AI Folk ontology is developed in a modular way, with the core
vocabulary being extended by a domain specific one. In the driving scene segmentation scenario for
autonomous driving a vocabulary to describe a DataContext specific to such an application domain is
defined.

Figure 5 shows how the DataContext concept from the core AI Folk ontology is extended by a Driv-
ingSceneContext specific one. The driving scene context is characterized by an environment condition
(which can refer to the illumination condition or to the weather condition) and a driving scene category

13

Figure 5: The concepts that characterize a DrivingSceneContext in the Segmentation for Autonomous
Driving application domain

Figure 6: View of instances of the DrivingSceneContext concept. The cityscapes test daylight ctx
individual identifies a data context from the Cityscapes dataset, while the driving context node2 dusk
identifies an individual representing a data context from the scene encountered by an agent during
runtime.

(e.g. a city, rural, highway or parking area).

Furtermore, the competency question based ontology development methodology explained in Section 2,
gives rise to instances of the DrivingSceneContext which have DataProperties as exemplified in Figure
6.

In Figure 6 it is important to note the extensive set of data property assertions which were identified
through the competency question methodology and which are deemed likely to influence the perfor-
mance of a segmentation model. Specifically, the data properties describe of some key situations and
objects that are likely to be encountered in an autonomous driving scenario. They relate to aspects
such as:

14

� The minimum, average and maximum number of pedestrians and other traffic participants
� The minimum, average and maximum number of cross or T-shaped intersections
� The average size ratio between a pedestrian or traffic participant and the whole image resolution
(i.e. how large do pedestrians or traffic participants appear in an image)

The values to the properties are obtained using approaches as those described in Section 5.4. Depending
on the values of these properties an agent can determine whether the current ML-based decision
making model that it is currently using is still appropriate for the data context it is perceiving from
its environment. If the model is no longer suitable from the semantic perspective described by the
ontology, the agent will use the messaging protocol described in Section 3 (see also Figure 7).

5.4 Experiments and Results

Figure 7: Interaction diagram between the various components in the implementation, when an input
is received, and when the situation requires a more adequate model.

Together with implementing the elements of the AI Folk project we have also developed experiments
testing essential functionality in the project. The following functionality was tested:

� interaction between agents by means of the AI Folk protocol.
� functionality of the Ontology Driver for storing model descriptions and building the description
of searched models.

� ability of agents to use the ML Pipeline in order to obtain output from the received input
� ability of agents to decide which model is more appropriate for a given situation.
� ability of agents to recognize situation in terms of a given set of parameters (e.g. weather, number
of pedestrians).

� ability to select the model to use in the ML Pipeline at runtime.

The concrete scenario that was researched was the changing of the currently used ML model for
segmentation, based on the appropriateness of the model in the context of a large number of pedestrians
close to the autonomous vehicle. We have made this choice based on the comparison between the
average percentage taken by the pedestrians in the images on which the model was trained.

Given our observations – presented in Figure 8, one can see that, in the case where more pedestrians
appear in the scene, YOLO detects more pedestrians in both datasets, so it is more adequate for use

15

ADE20k Cityscapes

4.2

4.4

4.6

4.8

Pedestrian percentage
ADE20k Cityscapes

10

20

30

Car percentage

Figure 8: Comparison of average surface percentage of pedestrians and cars identified by YOLO (in
red) and Deeplab (in blue) in the ADE20k and Cityscapes datasets.

in this case.

The tested scenario was the following: agent A is currently using the Deeplab model for segmentation.
At a certain point, the number of pedestrians identified in a recent window of 5 images becomes
considerably greater than the average of pedestrians in the dataset on which the model was trained.
In this case, agent A looks for another model to use, if any is available. It will ask agents B and C for
appropriate models. Agent B recommends the use of YOLO, which is more appropriate for the case
of more pedestrians. Agent A downloads the model and switches to using it, at least for the period
in which the number of pedestrians is high. A detailed view of the interaction between agents, drivers
and sub-agent components is presented in Figure 7.

6 Disaster Response Scenario

In order to emphasize the flexibility of the AI Folk methodology we have devised a scenario in the
domain of disaster response, identifying resources that we can use in implementing a proof-of-concept
in this domain.

In order to create the scenario, we have use the following principles: agents are embedded in robotic
devices with medium-sized computational capabilities; ML models are pre-trained and focused on
specific functionality; agents are able to communicate with other nearby agents in order to exchange
model parameters and experience information.

In the scenario there are three main types of agents – UAVs (Unmanned Aerial Vehicles) for recon-
naissance, UAVs for fire management, and UGVs (Unmanned Ground Vehicles). The scenario is as
follows:

After a major earthquake the buildings in the old center of the city are the most affected. Several
UAVs and UGVs are deployed. Reconnaissance UAVs are tasked with assessing damage evaluation;
Fire management UAVs are tasked with monitoring the evolution of fires; and UGVs are tasked with
locating human survivors and victims using sight and sound.

UAV 003 is a reconnaissance UAV – it employs ML models that assess damage to buildings based on
visual imaging, and models that perform image segmentation, recognizing building elements, cars, and
people. While assessing a damaged building, the segmentation model identify human shapes, but it
cannot discerne if the humans are suffering or if they are deceased.

Using a simple decision algorithm, the drone decides that, instead of calling an UGV, specialized in

16

(a) (b) (c)

Figure 9: Sample images from the AIDER dataset [Kyrkou, 2020] (a and b) and from the D-Fire
dataset [DFi, 2023] (c).

locating human survivors and victims, it can attempt to assess this itself. It contacts a UGV nearby
and it transfers a decision model that allows it to classify the state of human victims. Having acquired
the model, it identifies two survivors in the damaged building. It then calls for rescue teams, as it is
now certain they are needed in this case.

Later on, UAV 003 needs to return to base in order to recharge. However, on the way there is an area
with several smoke columns from a fire below. THe UAV is unable to navigate through smoke, and it
does not have enough energy to go around the smoke, but nearby there are several UAVs specialized in
navigating through smoke. On request by UAV 003, one of them transfers it a control model allowing
it to recognize the places with thinner smoke and fly though there.

We have already started a survey for identifying appropriate ML models and datasets for use in the
disaster response scenario.

AIDER (Aerial Image Dataset for Emergency Response applications) [Kyrkou, 2020]: The dataset
construction involved manually collecting all images for four disaster events, namely Fire/Smoke,
Flood, Collapsed Building/Rubble, and Traffic Accidents, as well as one class for the Normal case.
The dataset includes around 500 images for each disaster class and over 4000 images for the normal
class. This makes it an imbalanced classification problem. A few relevant images can be seen in Figure
9.

D-Fire [DFi, 2023] is an image dataset of fire and smoke occurrences designed for machine learning
and object detection algorithms with more than 21,000 images, of which 1164 contain only fire, 5867
contain only smoke, 4658 contain fire and smoke, and 9838 contain no fire and no smoke. All images
were annotated according to the YOLO format (normalized coordinates between 0 and 1). However,
the authors provide the yolo2pixel function that converts coordinates in YOLO format to coordinates
in pixels.

YOLO is a very popular framework for detection, segmentation and tracking [Jiang et al., 2022]. We
have successfully integrated it in our AI Folk experiments with the autonomous driving scenario and
we can use it in the disaster response scenario to detect people or other elements in the environment.

7 AI Folk Methodology

The end goal of our project is to develop a methodology that allows the integration of machine learning
model searching and transfer into a multi-agent deployment in any scenario. Since the beginning, we
knew that in deploying the methodology for a given scenario, some parts of the implementation will
remain invariant and some parts will need to be tailored to the necessities of the scenario. While
implementing the experiments with the autonomous drive scenario we have learned several lessons,
which we will need to verify and extend while implementing the disaster response scenario.

17

Table 3: Invariant and scenario-specific elements in deploying the AI Folk methodology in a given
scenario.

Component Invariant Scenario-specific

AI Folk
Ontology

Core concepts related to data contexts,
datasets, functions, models, model
evaluation, task characterizations,
neural networks and optimizers, etc.

Specific concepts. E.g., for the autonomous
driving scenario, the driving scene,
environment conditions
Instances of specific tasks, datasets and
models that can be used in autonomous
driving scenario

AI Folk
Interaction
Protocol

The protocol and its integration with
the Flash-mas framework are invariant.

A difference appears in the case in which
models are not transferred, but obtained
through other means (e.g. through functions
in the libraries). In this case the REQUEST and
TRANSFER primitives are no longer necessary.

Flash-mas
entities for
AI Folk

Developed entities are
scenario-invariant.

Situation recognition code is scenario-specific.

ML Python
server

The implementation of the server is
invariant, but the libraries that must be
installed on the host machine and which
the server imports are scenario-specific.

The libraries and the drivers of each
individual model are scenario specific.

Scripts for
situation
recognition

The scripts are specific to model and to the
given scenario, as they evaluate
scenario-specific parameters.

Currently, the main outline of the AI Folk methodology, when implementing it for a given scenario,
appears to be the following:

� gather all the ML models to be used in the scenario;
� for each model, create instances in the ontology, describing the model and the dataset(s) on
which it was trained;

� create scripts that evaluate specific parameters on input data and on used datasets;
� implement code for input transformation, evaluation, output processing, and library import, for
each model in the scenario;

� decide on the appropriate manner of transferring models between agents, depending on model
size and network capabilities;

� integrate in agents decision code for selection of the models, depending on scenario-specific
parameters for models;

� deploy agents according to the scenario requirements.

References

[DFi, 2023] (2023). D-Fire: an image dataset for fire and smoke detection. online.

[Armeni et al., 2017] Armeni, I., Sax, A., Zamir, A. R., and Savarese, S. (2017). Joint 2D-3D-Semantic
Data for Indoor Scene Understanding. ArXiv e-prints.

[Bellifemine et al., 1999] Bellifemine, F., Poggi, A., and Rimassa, G. (1999). JADE - a FIPA-compliant
agent framework. In Proceedings of PAAM, volume 99, pages 97–108. Citeseer.

[Brostow et al., 2009] Brostow, G. J., Fauqueur, J., and Cipolla, R. (2009). Semantic object classes
in video: A high-definition ground truth database. Pattern Recognition Letters, 30(2):88–97.

18

[Cordts et al., 2016] Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., and Schiele, B. (2016). The cityscapes dataset for semantic urban scene
understanding. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3213–3223.

[Everingham et al., 2010] Everingham, M., Van Gool, L., Williams, C. K., Winn, J., and Zisserman,
A. (2010). The pascal visual object classes (voc) challenge. International journal of computer vision,
88:303–338.

[Geiger et al., 2013] Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vision meets robotics:
The kitti dataset. The International Journal of Robotics Research, 32(11):1231–1237.

[Jiang et al., 2022] Jiang, P., Ergu, D., Liu, F., Cai, Y., and Ma, B. (2022). A review of yolo algorithm
developments. Procedia Computer Science, 199:1066–1073.

[Jocher et al., 2023] Jocher, G., Chaurasia, A., and Qiu, J. (2023). YOLO by Ultralytics.

[Kyrkou, 2020] Kyrkou, C. (2020). AIDER (aerial image dataset for emergency response applications).
online.

[Neuhold et al., 2017] Neuhold, G., Ollmann, T., Rota Bulo, S., and Kontschieder, P. (2017). The
mapillary vistas dataset for semantic understanding of street scenes. In Proceedings of the IEEE
international conference on computer vision, pages 4990–4999.

[Olaru et al., 2019] Olaru, A., Sorici, A., and Florea, A. M. (2019). A flexible and lightweight agent
deployment architecture. In 2019 22nd International Conference on Control Systems and Computer
Science (CSCS), Bucharest, Romania, 28-30 May 2019, pages 251–258. IEEE.

[Ros et al., 2016] Ros, G., Sellart, L., Materzynska, J., Vazquez, D., and Lopez, A. M. (2016). The
synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3234–3243.

[Xiao et al., 2010] Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., and Torralba, A. (2010). Sun database:
Large-scale scene recognition from abbey to zoo. In 2010 IEEE computer society conference on
computer vision and pattern recognition, pages 3485–3492. IEEE.

[Yu et al., 2020] Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., Madhavan, V., and Darrell,
T. (2020). Bdd100k: A diverse driving dataset for heterogeneous multitask learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 2636–2645.

[Yurtkulu et al., 2019] Yurtkulu, S. C., Şahin, Y. H., and Unal, G. (2019). Semantic segmentation with
extended deeplabv3 architecture. In 2019 27th Signal Processing and Communications Applications
Conference (SIU), pages 1–4. IEEE.

[Zhou et al., 2017] Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., and Torralba, A. (2017).
Scene parsing through ade20k dataset. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 633–641.

19

8 Executive report

We have continued the development of the AI Folk project with the integration of the components in
a multi-agent system deployment framework and with the implementation of a scenario in the domain
of autonomous driving. We have also made significant progress in the design and development of the
disaster response scenario.

The AI Folk ontology has been implemented, providing the core concepts related to machine learning
(ML) models, datasets, tasks, and data context characterization. Based on the core ontology, an
ontology specific to the autonomous driving scenario has been implemented.

We have overcome a number of challenges and we have integrated the components of the project,
allowing us to carry out experiments in the autonomous driving scenario. These components are a
modified version of the Flash-mas multi-agent framework, a connector to the AI Folk ontology, a
means to run experiments according to scenarios, and a mechanism to interface Java implementations
with the code necessary to run ML models implemented using Python libraries. We have created
components implementing the AI Folk interaction protocol.

For the autonomous driving scenario, we have surveyed models that can be used in such a scenario,
focusing on the task of image segmentation, and we have extracted features of those models which
can be used to separate between models in various scenario-specific situations. We have selected some
models which we have integrated with the existing implementation, describing them, and implementing
adequate input transformation and output processing.

We have created a demonstrative scenario in which an agent is using a given ML model, is recognizing
its situation, and when the situation requires it, it contacts other agents in search of a more appropriate
model. After receiving information about a more appropriate model, it loads that model and it starts
using it, seamlessly with respect to other agent components. In the demonstrative scenario, we have
focused on the number of pedestrians detected in a recent time window and on considering which
models are more appropriate in the detection and segmentation of pedestrians in the input.

Ww have devised a primary, skeleton version of the AI Folk methodology. A such, we have designed
the disaster response scenario and we have started applying the methodology to this scenario: we have
made a primary survey of models which can be used in the scenario, with the immediate next steps
of describing those models semantically, integrating those models with the existing implementation,
and developing the necessary scenario-specific situation recognition functionality, so that deployment
of the scenario can begin.

Project coordinator

Andrei Olaru

20

	Introduction
	Challenges
	Progress on objectives

	AI Folk Ontology
	AI Folk Interaction Protocol
	AI Folk Deployment
	Entities
	Deployment
	Evaluation of Machine Learning Models

	Autonomous Driving Scenario
	Experimental Scenario
	Datasets and Models
	Autonomous Driving Ontology
	Experiments and Results

	Disaster Response Scenario
	AI Folk Methodology
	Executive report

